SECOND EDITION

mmmm

STREAM OF A SOURCE BOOK FOR ARCHITECTS AND STRUCTURAL ENGINEERS

ANDREW CHARLESON

Structure as Architecture

Structure as Architecture presents a comprehensive analysis of the indispensable role of structure in architecture. An exploration, as well as a celebration, of structure, the book draws on a series of design studies and case study examples to illustrate how structure can be employed to realize a wide range of concepts in contemporary architecture. By examining design principles that relate to both architecture and structural engineering, Andrew Charleson provides new insights into the relationship between both the technical and aesthetic aspects of architecture.

Now in its second edition, the text has been extensively revised and updated throughout. Features include:

- a brand new chapter on hidden structure, adding to the material on exposed structures
- two new chapters on using structure to realize common architectural concepts through a combination of precedents and creative design
- over fifty new case studies from across the globe
- easy-to-understand diagrams and a highly visual design to aid understanding and accessibility

More than two hundred case studies of contemporary buildings from countries such as the UK, the US, France, Germany, Spain, Hong Kong, Australia and Japan illustrate how a thorough integration of structure adds layers of richness and enhances the realization of architectural design concepts.

Andrew Charleson has visited, photographed and analysed almost all of the case-study buildings included in this book. He is an Associate Professor at the School of Architecture, Victoria University of Wellington, New Zealand. Bringing over forty years' structural engineering experience to the topic, he has also written *Seismic Design for Architects: Outwitting the Quake* and published many papers relating both to the subject of this book and to his other main areas of research interest – earthquake engineering and architecture.

'Structure as Architecture cuts to the heart of the architectural and engineering relationship. This book explores how form and function blend, where structural and architectural concepts interweave and support each other for a technically and aesthetically enhanced work. Andrew Charleson demonstrates his holistic approach to architecture and engineering through stunning case studies where designers seamlessly and elegantly blend structural engineering with the architect's design intent. As a structural engineer and architect, I truly believe this book is a must-read.'

Holger S. Schulze Ehring, Structural Designer, New York City

Structure as Architecture

A source book for architects and structural engineers

Second edition

Andrew Charleson

First edition published 2006 by Elsevier Second edition published 2015 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN and by Routledge 711 Third Avenue, New York, NY 10017 *Routledge is an imprint of the Taylor & Francis Group, an informa business*

© 2015 Andrew Charleson

The right of Andrew Charleson to be identified as author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data Charleson, Andrew. Structure as architecture : a source book for architects and structural engineers / Andrew Charleson. – 2nd edition. pages cm Includes bibliographical references and index. 1. Structural design. 2. Architectural design. 3. Architecture--Aesthetics. I. Title. TA658.C454 2014 720-dc23 2014000980

ISBN13: 978-0-415-64459-4 (pbk) ISBN13: 978-1-315-756657-7 (ebk)

Typeset in Univers by Servis Filmsetting Ltd, Stockport, Cheshire

Contents

List of figures	viii
Preface	хх
Acknowledgements	ххі
Chapter 1. Introduction	1
The potential for structure to enrich architecture	1
Experiencing structure: reading and listening	2
Structure and its degree of exposure	3
Book outline	4
Chapter 2. Two building studies	6
National Stadium, Beijing	6
Baumschulenweg Crematorium	10
Summary	13
Chapter 3. Relationships between architectural and structural form	14
Introduction	14
Synthesis of architectural and structural form	18
Contrasting forms	32
Summary	40
Chapter 4. Building exterior	41
Introduction	41
Aesthetic qualities	42
Connecting the exterior to the interior	55
Entry	56
Expressive roles	58
Summary	62

Chapter 5. Building function	63
Introduction	63
Maximizing functional flexibility	64
Subdividing space	69
Articulating circulation	76
Disrupting function	78
Summary	82
Chapter 6. Interior structure	84
Introduction	84
Surface structure	85
Spatial structure	91
Expressive structure	99
Summary	104
Chapter 7. Structural detailing	106
Introduction	106
Expressive and responsive detailing	108
Summary	124
Chapter 8. Structure and light	125
Introduction	125
Source of light	126
Maximizing light	132
Modifier of light	139
Modified by light	142
Summary	144
Chapter 9. Representation and symbolism	145
Introduction	145
Representation	145
Symbolism	155
Summary	160

Introduction Hidden structural systems and members Degrees of hiddenness Techniques for hiding structure Motivations for hiding structure Summary	161 162 163 165 170 174
Degrees of hiddenness Techniques for hiding structure Motivations for hiding structure	163 165 170
Techniques for hiding structure Motivations for hiding structure	165 170
Motivations for hiding structure	170
Summary	174
Summary	
Chapter 11. Expressing architectural concepts	175
Introduction	175
Order–chaos	176
Stability-instability	181
Static-dynamic	186
Grounded-floating	192
Summary	200
Chapter 12. Facilitating architectural qualities	202
Introduction	202
Simplicity-complexity	202
Open-closed	206
Lightweight-heavy	209
Soft-hard	218
Elegant-rough	222
Summary	227
Chapter 13. Conclusions	228
Introduction	228
Transformative power of structure	228
Structural diversity	229
Implications for the architectural and structural engineering professions	229
Index	231

Figures

2.1	National Stadium, Beijing, China, Herzog & De	
	Meuron, 2008: an elevation of the stadium	6
2.2	The perimeter steel structure wraps around the	
	inner concrete bowl, Arup	7
2.3	A physical model of the perimeter steel and roof	
	gravity-resisting portal frame structure	7
2.4	The bottom chords of the portal girders can be	
	seen from the seating bowl	8
2.5	A view of a V-shaped truss-column near its base	8
2.6	Horizontal and diagonal members of portal	
	girders are visible beyond the upper curved	
	structure	8
2.7	Columns supporting the concrete bowl are also	
	inclined	9
2.8	A flight of stairs with a visible soffit fully	
	integrated with an inclined perimeter member	9
2.9	Baumschulenweg Crematorium, Berlin, Axel	
	Schultes Architects, 1999: front elevation1	0
2.10	Simplified ground-floor plan 1	1
2.11	Condolence hall columns 12	2
2.12	Annuli of light as column 'capitals'12	2
2.13	Light-slot between the side wall and the roof slab 13	3
2.14	Texture and niches of the condolence hall side	
	walls1;	3
3.1	Library Square, Vancouver, Canada, Moshe	
	Safdie and Associates Inc., 1995 1	5
3.2	Mont-Cenis Academy, Herne,Germany, Jourda &	
	Perraudin, 1999: a glaxed box with entry canopy 1	
3.3	Post and beam gravity structure1	5
3.4	Vertical trusses support the wall 10	3
3.5	Exchange House, London, Skidmore, Owings &	
	Merrill, 1993: arches enable the building to span	
	the site1	
3.6	A transverse exterior cross-braced frame 10	6

3.7	Interior of a concrete shell structure	18
3.8	Bus station, Cárceres, Spain, Justo García Rubio	
	Arquitecto, 2003	18
3.9	Palazzetto dello Sport, Rome, Italy, Pier Luigi	
	Nervi with A.Vitellozzi, 1957: inclined struts	
	support the shell roof	19
3.10	Interior ribbed surface of the shell	19
3.11	Eden Project, Cornwall, UK, Nicholas Grimshaw	
	& Partners, 2001: a cluster of interlinked biomes	19
3.12	Biome interior structure consisting of outer	
	primary hexagons and an inner layer of braced	
	rods	20
3.13	Stellingen Ice Skating Rink and Velodrome,	
	Hamburg, Germany, Silcher, Werner + Partners,	
	1996: overall form	20
3.14	Contrasting architectural qualities of fabric	
	surface and interior structural elements	20
3.15	Portuguese Pavilion, Lisbon, Portugal, Alvaro	
	Siza, 1998	21
3.16	Dulles International Airport, Washington, D.C.,	
	USA, Saarinen (Eero) and Associates, 1962	21
3.17	Hall 26, Trade Fair, Hanover, Germany, Herzog +	
	Partner, 1996: three catenaries span between	
	masts	22
3.18	A mast withstands opposing catenary tensions	
	at its top and at mid-height	22
3.19	National Art Centre, Tokyo, Japan, Kisho	
	Kurokawa and Associates, 2006: vertical but	
	curved ribs support and define the undulating	
	façade	23
3.20	The lower of the two cones and nearby ribs	23
3.21	The Reichstag cupola, Berlin, Germany,	
	Foster and Partners, 1999: radial ribs and	
	circumferential tubes	23

3.22	The interior of the cupola	23
3.23	Tobias Grau headquarters, Rellingen, Germany,	
	BRT Architekten, 1998: glue-lamintaed wooden	
	ribs enclose the ground-floor interior concrete	
	structure	24
3.24	Curved wooden ribs behind glass louvres	
3.25	Paul Klee Museum, Bern, Switzerland, Renzo	
0.20	Piano Building Workshop, 2005: arches form	
	three different-sized 'hills'	25
3.26	The arches also have a strong presence within	20
3.20	51	<u>аг</u>
0.07	the interior	25
3.27	The Great Glasshouse, Carmarthenshire, Wales,	~ ~
	Foster and Partners, 1998	26
3.28	Pequot Museum, Mashantucket, USA, Polshek	
	Partnership Architects, 2000: exterior view of	
	the curved and sloping glazed walls of main	
	public space	26
3.29	The horizontal arch supports the curved and	
	sloping wall	26
3.30	United Airlines Terminal, Chicago, USA, Murphy/	
	Jahn, 1987. Folded plates span the main entry	
	foyer	27
3.31	Riverside Museum, Glasgow, UK, Zaha Hadid, 2011	27
3.32	Gymnasium, Hong Kong, China: view from	
	above showing the folded plate construction	28
3.33	Interior of the gymnasium	
3.34	Fuji TV building, Tokyo, Japan, Kenzo Tange, 1996	
3.35	San Cataldo Cemetery columbarium, Modena,	
	Italy, Aldo Rossi, 1984	30
3.36	Princess of Wales Conservatory, London,	00
0.00	Gordon Wilson, 1986	30
3.37	Faculty of Journalism, Pamplona, Spain, Vicens	00
3.37		
	and Ramos, 1996: walls visually dominate the	20
0.00	exterior	
3.38	An interior architecture of walls	31
3.39	Zollverein School of Management and Design,	~ 1
~	Essen, Germany, SANAA, 2007	31
3.40	Prada Boutique Aoyama, Tokyo, Japan, Herzog	
	& De Meuron, 2003: the main entry and lower	
	floors of the six storeys above ground level	32
3.41	The structural diagrid wall is most clearly visible	
	from within the building	32
3.42	Exchange House, London, Skidmore, Owings &	
	Merrill, 1993	32
3.43	TGV station, Lille, France, SNCF/Jean-Marie	
	Duthilleul, 1994	33
3.44	Railway station, Rome, Montuori, Vitellozzi,	

	curved roof beams over the main concourse
3.45	Unexpected interior arches in the TGV station
3.46	Santa Caterina Market, Barcelona, Spain, EMBT,
	2005: tiled vaults over the main entrance
3.47	Tangled tubular columns support trusses for the
	tubular arches that form the vaults
3.48	The length-wise trusses and the three
	penetrating arch trusses that support them
3.49	Novartis Building, Basel, Switzerland, Gehry
	Partners, 2009: highly irregular architectural form 35
3.50	Less rational structure supporting the floors
0.00	around the internal atrium
3.51	LASALLE College of the Arts, Singapore, RSP
0.01	Architects, 2007
3.52	Stuttgart Airport terminal, Germany, Gerkan,
0.02	Marg + Partners, 1991
3.53	Regional Government Centre, Marseille, France,
0.00	Alsop & Störmer, 1994: a combination of forms 37
3.54	The X-columns in the atrium
3.55	Westminster College, London, UK, Schmidt
3.00	Hammer Lassen Architects, 2011: vertical and
	raking columns form triangulated frames that
2 5 6	modulate the entry foyer
3.56	The front façade cantilevers while the facing
0 57	façade on the left steps back up its height
3.57	A sloping column resists vertical load by a
	combination of compression in the raking
	members and either tension or compression in
0 50	the horizontal floor structure
3.58	Sendai Mediatheque, Sendai, Japan, Toyo Ito
	& Associates, 2000: exterior view with some
	structure visible behind the predominantly
	glazed skin
3.59	The structure in the main library area, due to the
	size and varying inclination of struts, appears to
	sway
3.60	The Great Court, British Museum, London,
	Foster and Partners, 2000
4.1	Hong Kong and Shanghai Bank, Hong Kong,
	China, Foster Associates, 198641
4.2	Kursaal Auditorium and Conference Centre, San
	Sebastian, Spain, Rafael Moneo, 199943
4.3	Yerba Buena Lofts, San Francisco, USA, Stanley
	Saitowitz Office/Natoma Architects, 200243
4.4	RAC Control Centre, Bristol, UK, Nicholas
	Grimshaw & Partners, 199544

Calini, Castellazi, Fatigati & Pintonella, 1950:

4.5	New Court, London, UK, OMA, 2011: along
	the street frontage, paris of columns with
	occasional braces form a colonnade
4.6	Expressed structure modulates the façade
	with randomly placed braces further enlivening
	it
4.7	Velasca Tower, Milan, Italy, BBPR, 1958
4.8	Notre Dame Cathedral, Paris, 1260
4.9	Dulles International Airport, Washington, D.C.,
	USA, Saarinen (Eero) and Associates, 1962
4.10	Student Canteen, Karlsruhe, Germany, J. Mayer
	Architects, 2007
4.11	Mönchengladbach Museum, Germany, Hans
	Hollein, 1982
4.12	Mound Stand, Lord's, London, Michael Hopkins
	& Partners, 1987
4.13	Canopy structure, World Exhibition Centre,
	Hanover, Germany, Herzog + Partner, 1999
4.14	Mikimoto Ginza 2 building, Tokyo, Japan, Toyo Ito
	& Associates, 2005: the surfaces of the planar
	perimeter walls are smooth, and the only hint of
	their depth is where openings are viewed
	obliquely
4.15	The interior visual qualities of structure (lined
	with plasterboard) are similar to those of the
	exterior
4.16	Exhibition Centre, Melbourne, Australia, Denton
	Corker Marshall, 1996:verandah posts visually
	soften the façade
4.17	A view along the verandah
4.18	Luxembourg Philharmonic Hall, Luxembourg,
	Christian de Portzamparc, 2005
4.19	Library Square, Vancouver, Canada, Moshe
	Safdie and Associates Inc., 1995
4.20	Jacob and Wilhelm Grimm Centre, Central
	library of Humboldt University, Berlin, Max
	Dudler, 2009
4.21	O-14 Tower, Dubai, Reiser + Umemoto, 201151
4.22	Broadgate Tower, London, UK, SOM, 2008: due
	to railway tracks running under the right-hand
	side of the tower, inclined struts transfer forces
	across to piers underneath the ground plane to
	the right
4.23	The inclined structural canopy slices through the
-	space between office blocks
4.24	A simplified section to explain the transfer
	structure for vertical loads

4.25	Cathedral of Notre Dame de la Treille, Lille,	
	France, Pierre-Louis Slide Carlier Architecte,	
	1997: steel filigree structure supports the nave	
	wall	53
4.26	Horizontal steel structure spans between	
	columns of a pre-stressed stone arch	53
4.27	Cannon Bridge House, London, UK, Foggo	
4.27	Associates, 2012: the façade-truss structure	
	spans the width of the building and is supported	
	by cantilevered trusses at each end	54
4.28	The cantilever truss diagonals comprise multiple	
	members to reduce their size	54
4.29	Law Courts, Bordeaux, France, Richard Rogers	
	Partnership, 1998.	54
4.30	Cité des Sciences et de l'Industrie, Paris, Adrien	
	Fainsilber, 1986	55
4.31	Stansted Airport terminal, Essex, UK, Foster	
	Associates, 1991	55
4.32	Mont-Cenis Academy, Herne, Germany, Jourda	
	& Perraudin, 1999	56
4.33	Public University of Navarra, Pamplona, Spain,	
	Sāenzde Oiza Arquitectos, 1993	56
4.34	Millennium Stadium, Cardiff, Wales, The Lobb	
	Partnership (now HOK Sports), 2000	57
4.35	Terminal 2F, Charles de Gaulle Airport, Paris,	
1.00	Aéroports de Paris, 1999: semi-circular columns	
	signal entry	57
4.36	A 'split column' viewed from inside	
4.30	National Museum of Emerging Science and	
4.37		FO
4.00	Innovation, Tokyo, Japan, AMS Architects, 2001	58
4.38	Cité de la Musique, Paris, Christian de	
	Portzamparc, 1995	
4.39	S. Giorgio Maggiore, Venice, Italy, Palladio, 1610	59
4.40	Fitzwilliam College Chapel, Cambridge, UK,	
	Richard MacCormac, 1991	59
4.41	Business School, Öhringen, Germany, Gunter	
	Behnisch & Partner, 1993: the main entrance of	
	the haphazardly orientated buttresses	59
4.42	A horizontal plate passes through the buttress	
	without making contact	60
4.43	Peckham Library, London, UK, Alsop & Störmer,	
	2000: a row of casually placed and orientated	
	columns support the elevated front façade of	
	the lending library volume	60
4.44	The columns exude a sense of informality	
4.45	Bracken House, London, Michael Hopkins and	
1. 10	Partners, 1991: main façade	61

4.46	Metal columns, a cantilever bracket and a
	stainless-steel rod behind a stone pier
5.1	Tugendhat House, Brno, Czech Republic, Mies
	van de Rohe, 193064
5.2	Oxford Ice Rink, UK, Nicholas Grimshaw &
	Partners, 198565
5.3	Hampden Gurney Church of England Primary
	School, London, UK, Building Design
	Partnership, 2002: the assembly hall
5.4	Inclined tension rods connect into the arched
	truss which also supports the two high points of
	a tension-membrane roof canopy
5.5	Bridge Academy, London, UK, Building Design
	Partnership, 2007: from an inclined roof-level
	horseshoe ring beam, a steeply sloping ETFE
	wall meets the Learning Resource Centre roof 66
5.6	A view through the sloping atrium
5.7	The column-free ground-floor gathering space
5.8	Financial Times printing works, London, Nicholas
	Grimshaw & Partners, 198867
5.9	Toskana Thermal Pools, Bad Sulza, Germany,
	Ollertz & Ollertz, 1999: wooden shell structures 68
5.10	Open structure-free space under the shell roofs 68
5.11	Timber Showroom, Hergatz, Germany,
	Baumschlager-Eberle, 199568
5.12	Sainsbury Centre for Visual Arts, Norwich, UK,
	Foster Associates, 197769
5.13	Exhibition Hall 3, Frankfurt, Germany, Nicholas
	Grimshaw & Partners, 200169
5.14	Museum of Roman Art, Merida, Spain, Rafael
	Moneo, 1985: a view along the nave
5.15	Floor slabs divide the space vertically70
5.16	Thermal Baths, Vals, Switzerland, Atelier Peter
	Zumthor, 1996: simplified ground-floor plan70
5.17	Main interior pool, partially surrounded by
	walls71
5.18	Némausus Apartments, Nîmes, France, Jean
	Nouvel et Associés, 198871
5.19	Contemporary Art Wing, Hamburg, Germany,
	O. M. Ungers, 1996: building exterior
5.20	Simplified ground-floor plan72
5.21	Public University of Navarra, Pamplona, Spain,
	Sáenzde Oiza Arquitectos, 199372
5.22	Terminal 4, JFK Airport, New York, USA,
	Skidmore Owings & Merrill, 2001: structure
	occupies the entry zone73
5.23	V-struts separate ticketing areas to the left from

	a circulation area and retail outlets on the floor
	beneath73
5.24	Library, Delft Technical University, The
	Netherlands, Mecanoo Architekten, 1997: a
	view of the cone above the turf roof73
5.25	The circulation desk beneath the cone is
	surrounded by steel struts74
5.26	Law Courts, Bordeaux, France, Richard Rogers
0.20	Partnership, 1998
5.27	Art Museum, Bregenz, Austria, Atelier Peter
5.27	Zumthor, 1997: the building with the main
	-
E 20	entrance to the left
5.28	Simplified ground-floor plan
5.29	Centraal Beheer Office Building, Apeldoorn, The
	Netherlands, Herman Hertzberber with Lucas &
	Niemeijer Architects, 197275
5.30	Colegio Teresiano, Barcelona, Spain, Antoni
	Gaudí, 1889
5.31	San Cataldo Cemetery, Modena, Italy, Aldo
	Rossi, 1984
5.32	Canary Wharf Underground Station, London,
	Foster and Partners, 199977
5.33	Terminal 3, Hamburg Airport, Germany,
	vonGerkan, Marg + Partners, 199178
5.34	Castelvecchio Museum, Verona, Italy, Carlo
	Scarpa, 1964
5.35	Research Centre, Seibersdorf, Austria, Coop
	Himmelb(I)au, 1995: the office block and its
	irregular columns
5.36	A column dominates the 'thinking room'79
5.37	Convent of La Tourette, Eveux, France, Le
	Courbusier, 1959: the western façade and three
	levels of irregularly spaced mullions80
5.38	Two columns on the right are set in from the
	exterior wall and intrude upon a teaching space 80
5.39	Pizza Express restaurant façade, 125 Alban
	Gate, London, Bere Associates, 199680
5.40	125 Alban Gate, London, Terry Farrell, 199281
5.41	California College of the Arts, San Francisco,
	USA, Tanner Leddy Mantum Stacy, 199981
5.42	Staatsgalerie, Stuttgart, Germany, Stirling and
	Wilford, 1984
5.43	Scottish Exhibition Centre, Glasgow, Scotland,
	Parr Partnership, 1985
6.1	Wöhlen High School, Switzerland, Santiago
	Calatrava, 1988: attractive structural framing
	pattern of the entrance foyer roof

6.2	Refined wooden struts connect to the steel rod
	tension-ring and the rafters with deepened ends 85
6.3	Saint Benedict Chapel, Sumvitg, Switzerland,
	Peter Zumthor, 1989: chapel exterior
6.4	Chapel interior, facing towards the altar
6.5	Ribbed roof structure
6.6	Bodegas Protos, Valladolid, Spain, Rogers Stirk
	Harbour + Partners, 2008
6.7	FDA Laboratory, Irvine, California, USA, Zimmer
017	Gunsul Frasca Partnership + HDR, 2003
6.8	Güell Colony Crypt, Barcelona, Spain, Antoni
0.0	Gaudí, 1917
6.9	Building Industry School, Hamm, Germany,
0.0	Heger Heger Schlieff, 1996
6.10	Saint Massimiliano Kolbe Church, Varese, Italy,
0.10	Justus Dahinden, 1994: interior surface
6.11	A typical joint between ribs
6.12	Yohama International Passenger Terminal, Japan,
0.12	Foreign Office Architects, 2002: folds of the roof
	folded plate structure are visible over the main
	entry
6.13	The folded plates as seen looking across the lobby 90
6.14	Western Concourse, King's Cross Station,
0.14	London, UK, John McAslan + Partners, 2012
6.15	
0.15	Nicolas G. Hayek Centre, Tokyo, Japan, Shigeru
	Ban Architects, 2007: transparent columns and
	perimeter mullions support the curved and woven roof structure
6 16	
6.16	Different structural layouts affect how spaces
0 17	are read
6.17	Alternative structural layouts for resisting
0.40	transverse lateral loads on a multi-storey building 92
6.18	Portland Building, University of Portsmouth,
	UK, Hampshire County Council Architects
0.40	Department, 1996
6.19	Lyon School of Architecture, Lyon, France,
	Jourda et Perraudin, 1988
6.20	Kanagawa Institute of Technology (KAIT)
	workshop, Atsugi, Japan, Junya Ishigami and
	Associates, 2008: the interior structure forest is
	visible behind the glazed façade
6.21	Work benches and equipment are scattered
	around, never far from structure94
6.22	Hall, Wöhlen High School, Switzerland, Santiago
	Calatrava, 1988: a view towards the rear of the hall . 94
6.23	Looking across the hall95
6.24	Museum of Contemporary Art, Barcelona,

	Spain, Richard Meier Architects, 1995: exterior
	glazed wall to the ramp hall with the ramp
	structure behind
6.25	Ramp colonnade to the right and the innermost
	structural layer on the left96
6.26	Stadttor Building, Düsseldorf, Germany, Petzinka
	Pink und Partner, 1998: an interior braced tower
	is visible through the glazing96
6.27	A view up through a tower97
6.28	GC Prostho Museum Research Centre, Aichi,
	Japan, Kengo Kuma & Associates, 2010
6.29	Regent's Park Pavilion, London, UK, Carmody
	Groarke, 2009: the pavilion consists of 258
	columns and a very lightweight penetrated roof 97
6.30	Three seats amid the forest of slender columns 98
6.31	Fitzwilliam College Chapel, Cambridge, UK,
	Richard MacCormac, 1991: concrete frames
	demarcate a central area of the chapel interior98
6.32	The wooden roof is propped off an outer frame98
6.33	Notre Dame du Raincy, Paris, France, Auguste
	Perret, 1923
6.34	Museum of Gallo-Roman Civilization, Lyon,
	France, Bernard Zehrfuss, 1975: a central view
0.05	of continuous and sloping columns 100
6.35	Concrete frames extend over the galleries and
0.00	corridor
6.36	Westminster Station, London, Michael Hopkins
	& Partners, 1999: tunnel lining exposed at a
0.07	platform
6.37	Horizontal props between side walls
6.38	Props pass through central columns
6.39	Arts Centre, Rotterdam, The Netherlands, Office
	for Metropolitan Architecture, 1992: columns in
0.40	the auditorium lean towards the dais
6.40	Unusually configured roof-plane bracing
6.41	An ambiguous relationship between a
0.40	cantilevering slab and a tension-tie from the roof 102
6.42	Channel 4 Headquarters, London, UK, Richard
0.40	Rogers Partnership, 1995
6.43	Oxford University Museum, UK, Deane and
0.44	Woodward, 1860
6.44	Peckham Library, London, UK, Alsop & Störmer,
	2000: the exterior columns below the main
	library space move through it to support the roof
	and introduce an informal quality104
6.45	Sloping columns of three suspended pods also
	express informality 104

7.1	Several alternative structural member options
	for wooden post-and-beam construction
7.2	Several alternative structural member options
	for steel post-and-beam construction 107
7.3	Several alternative structural member options
	for concrete post-and-beam construction
7.4	Grand Louvre, Paris, France, I. M. Pei, 1989:
	louvre pyramid109
7.5	Coffered slab soffit
7.6	Triangular recesses within the central column
	relate to the pyramid above 109
7.7	Suhr office building, Switzerland, Santiago
	Calatrava, 1985: the building is circular in plan,
	with an attached service core behind110
7.8	Perimeter blade-like strut110
7.9	Rounded precast-concrete stair stringer110
7.10	Everlyn Grace Academy, London, UK, Zaha
	Hadid Architects, 2010111
7.11	Tobius Grau KG office, Rellingen, Germany, BRT
	Architekten, 1998: structure of the office
	interior
7.12	Fine diagonal bracing reads as 'stitching'112
7.13	Arts Centre, Rotterdam, The Netherlands, Office
	for Metropolitan Architecture, 1992: ungainly
	exterior beam
7.14	Two of the three differently detailed columns
7.15	Mossbourne Community Academy, London, UK,
7.16	Rogers Stirk Harbour + Partners, 2004113 United Airlines Terminal, Chicago, USA, Murphy/
7.10	Jahn. 1987: the main concourse
7.17	Innovative steel construction
7.18	Evelina Children's Hospital, London, Hopkins
7.10	Architects, 2005: a steel lift-tower within the
	conservatory
7.19	Towers express steel construction through the
	use of steel plates and stiffeners
7.20	Bolts clamp tower sections together and a
	double-cantilevered beam supports a concrete
	bridge slab at one end and is held down at
	the other by a tensioned rod anchored in the
	foundations115
7.21	Hazel Wood School, Southampton, UK,
	Hampshire County Council Architects
	Department, 1990: the hall roof structure is
	typical of that for the whole school115
7.22	Short beams transfer loads from the lattice roof
	to a column116

7.23	Hedmark Museum, Hamar, Norway, Sverre
	Fehn, 2005116
7.24	FABRICA (Benetton Communication Research
	Centre), Treviso, Italy, Tadao Ando & Associates,
	2000
7.25	Ferry terminal and office building, Hamburg,
	Germany, Alsop and Störmer, 1993: partially
	exposed precast-concrete A-frames
7.26	Precast bracket and frame junction
7.27	Guggenheim Museum, Bilbao, Spain, Frank O.
1.21	Gehry & Associates, 1997: view of the museum
700	from the La Salve Bridge118
7.28	The tower structure and its exposed braced
	framework118
7.29	Fisher Center, Bard College,
	Annadale-on-Hudson, USA, Frank O. Gehry &
	Associates, 2002: side elevation with the main
	entry canopy to the right118
7.30	Exposed construction of an exterior wall that
	curves towards the theatre roof119
7.31	Carpentry School, Murau, Austria, E.
	Giselbrecht, 1992: end elevation119
7.32	Web members connect to a truss bottom chord 119
7.33	Face-loads only are transferred through the
	vertical plate-rod connection 120
7.34	Jussieu University, Paris, Edouart Albert, 1965 120
7.35	Stadelhofen Railway Station, Zürich, Switzerland,
	Santiago Calatrava, 1990: escalator entrance
	structure
7.36	Upper cantilever-to-torsion-beam connection,
	with smaller canopy cantilevers in the
	background121
7.37	Stratford Regional Station, London, UK,
	Wilkinson Eyre, 1999 122
7.38	Lyon School of Architecture, France, Jourda et
	Perraudin, 1988: a cast-steel shoe expresses the
	compression load-path
7.39	A beam–column connection that allows for a
7.00	down-pipe to pass through where required
7.40	Palau Guëll, Barcelona, Spain, Antoni Gaudí,
7.40	
711	1880
7.41	Glasgow School of Art, UK, Charles Rennie
740	Mackintosh, 1899
7.42	Post-Modern Art Museum, Stuttgart, Germany,
	James Stirling, Wilford & Associates, a984:
	classical detailing of a post-and-beam entrance
	structure 123

7.43	Mushroom reinforced concrete columns in a	
	gallery	124
8.1	Stellingen Ice Skating Rink and Velodrome,	
	Hamburg, Germany, Silcher, Werner + Partners,	
	1996	126
8.2	San Francisco International Airport, USA,	
	Skidmore Owings & Merrill LLP, 2000: a side	
	two-dimensional truss transforms into three	
	dimensions over the central span of the terminal	127
8.3	Light passes through a three-dimensional truss	
8.4		127
0.4	Dome Leisure Centre, Doncaster, UK,	100
0 5	FaulknerBrowns Architects, 1989	128
8.5	Kew Swimming and Recreation Centre,	
	Melbourne, Australia, Daryl Jackson Architects,	
	1990	128
8.6	Sant Jordi Sports Hall, Barcelona, Spain, Arata	
	Izosaki & Associates, 1990	129
8.7	Burrell Gallery, Glasgow, UK, Barry Gasson	
	Architects, 1983	129
8.8	Portuguese Pavilion, Lisbon, Portugal, Alvaro	
	Siza, 1998	130
8.9	Railway station at Satolas Airport, Lyon, France,	
	Santiago Calatrava, 1994: glazing centred over	
	the main concourse	130
8.10	A view across the concourse	131
8.11	Recessed lights in stub columns	131
8.12	Stadelhofen Railway Station, Zürich, Switzerland,	
	Santiago Calatrava, 1990	131
8.13	Trade Fair Glass Hall, Leipzig, Germany, Ian	
	Ritchie Architects, 1996: exterior trusses support	
	the vaulted grid-shell	132
8.14	Trusses and the grid-shell as seen from within	
	the hall	133
8.15	Cité des Sciences et de l'Industrie, Paris, Adrien	
0.10	Fainsilber, 1986: Les Serres or conservatories on	
	the main facade	133
8.16	A hierarchy of prestressed cable-beams resist	100
0.10	face-loads on the glazed walls	100
8.17	School at Waidhausenstraße, Vienna, Austria,	155
0.17		
	Helmut Richter, 1995: composite steel walkway	101
0.10	beams	134
8.18	Triangular cantilever trusses support the mono-	101
~	slope glazed roof	134
8.19	Carré d'Art, Nîmes, France, Sir Norman Foster	
	and Partners, 1993: glass stair-treads and the	
	supporting structure in the atrium	
8.20	Bevelled and set-back beams	135

8.21	Schools of Geography and Engineering, Marne-	
	la-Vallée, Paris, France, Chaix & Morel, 1996	3
8.22	Mexican Embassy, Berlin, Germany, González	
	de León and Serrano, 2000 136	5
8.23	Broadfield House Glass Museum, West	
	Midlands, UK, Design Antenna, 1994	7
8.24	Town Administrative Centre, Saint-Germaine-en-	
	Laye, Paris, France, Brunet and Saunier, 1995:	
	glass columns support roof beams	7
8.25	A glass column base detail	
8.26	Apple Store, New York, USA, Bohlin Cywinski	
	Jackson, 2002: the central glass staircase	3
8.27	Stair-treads connect to the glass wall	
8.28	Yurakucho subway canopy, Tokyo International	
	Forum, Tokyo, Japan, Rafael Vigňoly Architects,	
	1996	3
8.29	City of Arts and Sciences, Valencia, Spain,	
	, Santiago Calatrava, 1998: l'Umbracle with its	
	garden shade-structure)
8.30	Shade-structure arches and ribs	
8.31	Seed House and Forestry Centre, Marche-en-	
	Femenne, Belgium, Samyn et Associés, 1996:	
	exterior view)
8.32	Shading increases at the splice positions of the	
	transverse arches)
8.33	Mönchengladbach Museum, Germany, Hans	
	Hollein, 1982	
8.34	Business School, Öhringen, Germany, Günter	
	Behnisch & Partner, 1993141	
8.35	Library Square, Vancouver, Canada, Moshe	
	Safdie and Associates Inc., 1995 141	
8.36	Mound Stand, Lord's, London, Michael Hopkins	
	and Partners, 1987 142	2
8.37	Timber Showroom, Hergatz, Germany,	
	Baumschläger-Eberle, 1995142	2
8.38	Mönchengladbach Museum, Germany, Hans	
	Hollein, 1982	3
9.1	Palais de Justice, Melun, France, Jourda &	
	Perraudin Architectes, 1998 146	3
9.2	Tod's Omotesando Building, Tokyo, Japan, Toyo	
	Ito & Associates, 2004147	7
9.3	Oriente Station, Lisbon, Portugal, Santiago	
	Calatrava, 1996: a lightweight platform canopy	
	atop a heavy base	
9.4	A view along the canopy structure	7
9.5	Palm tree frond-like ribs connect to a primary	
	arch	3

9.6	Stansted Airport terminal, UK, Foster
	Associates, 1991
9.7	Aluminium Centre, Houten, The Netherlands,
	Micha de Haas, 2002 148
9.8	Outdoor Activities Centre, Portsmouth, UK,
	Hampshire County Architects, 1995
9.9	Wöhlen High School entry canopy, Switzerland,
	Santiago Calatrava, 1988: ribs cantilever from
	the main arch
9.10	Feet-like base-plates to the window mullions
	behind the canopy149
9.11	Glass Hall, Tokyo International Forum, Tokyo,
	Japan, Rafael Vigňoly Architects, 1996: the
	full-height glazed wall facing the other sections
	of the Forum complex
9.12	The roof structure as seen from the main
	concourse
9.13	Closer to the roof, the tension rods become more
	visible
9.14	The roof structure can be thought of simply
	as a tied arch (a) that is inverted with the arch
	then functioning as a catenary and the tie as a
	compression member (b)
9.15	Armenian School Library, Los Angeles, USA,
	StudioWorks Architects, 2003: the 'ark' is
	elevated above the school playground
9.16	The main columns align with the keel and are
	flanked by stabilizing posts
9.17	Atlantic Pavilion, Lisbon, Portugal, Skidmore
• • • •	Owings & Merrill plc, 1998: the sleek pavilion
	roof
9.18	Wooden trussed-arches oversail the seating
9.19	Youth Club, Möglingen, Stuttgart, Germany,
00	Peter Hübner, 1996: building exterior
9.20	A primary structural roof support displaying
	space-age detailing
9.21	Wöhlen High School library roof, Switzerland,
	Santiago Calatrava, 1988
9.22	Church of the Autostrada, Florence, Italy,
	Giovanni Michelucci, 1968: the church as seen
	from the motorway
9.23	Dramatic interior structure with the main altar to
	the left facing the rows of seats
9.24	Details of the concrete structure
9.25	Jewish Museum, Berlin, Germany, Daniel
2.20	Libeskind, 1998
9.26	Felix Nussbaum Museum, Osnabrück, Germany,
5.20	

	Daniel Libeskind, 1998: dysfunctional concrete
	beams in the Nussbaum Corridor
9.27	Beams passing across the light-slot read as the
	bars of prison cells
9.28	Imperial War Museum-North, Manchester, UK,
	Studio Daniel Libeskind, 2002158
9.29	Federation Square, Melbourne, Australia, Lab
	Architectural Studio and Bate Smart Partners,
	2002: the tangled structure of the atrium roof 158
9.30	A perimeter walkway through the wall structure
	of the BMW Edge amphitheatre159
9.31	Industrial Park Office Building, Völkermarkt,
	Carinthia, Austria, Günther Domenig, 1996: the
	framed block supporting the cantilever with the
	lift and stair tower behind159
9.32	Steel cantilever structure 159
10.1	An elevational study of two exterior structural
	systems, a moment frame and a coupled shear
10.0	wall
10.2	China Central Television (CCTV) Headquarters,
10.0	Beijing, OMA, 2009
10.3	Okumura Memorial Museum, Nara, Japan, 2007.
	A base-isolation rubber bearing between red-
	painted base-plates is proudly displayed in the basement
10.4	Office building, Wellington, New Zealand
10.4	N.W. Corner Building, Columbia University, New
10.0	York, USA, Rafael Moneo, 2011
10.6	HL23, New York, USA, Neil M. Denari Architects,
	2009
10.7	Examples of structural function being hidden
	(misrepresented) by structural detailing
10.8	San Francisco Museum of Modern Art, San
	Francisco, USA, Mario Botta, 1995: the structural
	steel framework during construction
10.9	A view of the building with its non-structural
	masonry cladding panels indicative of load-
	bearing masonry construction167
10.10	Serpentine Gallery Pavilion, London, UK, Frank
	O. Gehry, 2008
10.11	De Young Museum, San Francisco, USA, Herzog
	& De Meuron, 2005167
10.12	The Lowry Centre, Salford, UK, Michael Wilford,
	2000
10.13	Kursaal Congress Centre and Auditorium, San
	Sebastian, Spain, Rafael Moneo, 1999 168
10.14	Colegio Teresiano, Barcelona, Spain, Antoni

	Gaudí, 1889: a spiral brick masonry column that
	is not immediately recognized as structure
10.15	Slender single brick columns that appear too
	fragile to function as structure
10.16	MUMUTH Music School and Theatre, Graz,
	Austria, UN Studio, 2008 169
10.17	Minnaert Building, University of Utrecht, The
	Netherlands, Neutelings Riedijk Architecten,
	1997
10.18	Library, Delft Technical University, The
	Netherlands, Mecanoo Architekten, 1997 170
10.19	London Aquatic Centre, London, UK, Zaha
	Hadid, 2011: the extensive and complex roof
	structure
10.20	The sleek form is uncompromised by exposed
	structure
10.21	BMW Welt, Munich, Germany, Coop
	Himmelb(I)au, 2007: exterior form with the
	'cloud' roof emanating from the vortex of the
	'double cone' 171
10.22	Large open spaces achieved by deep and
	complex roof structure hidden by ceiling
	panels
10.23	Forum Building, Barcelona, Spain, Herzog & De
	Meuron, 2004 172
10.24	Guthrie Theater, Minneapolis, USA, Jean Nouvel,
	2006
10.25	Leutschenbach School, Zürich, Switzerland,
	Christian Kerez, 2008172
10.26	Office building, Wellington, New Zealand 173
10.27	Office building, San Francisco, USA: slender
	structural steel columns
10.28	Removal of some cladding to a column reveals
	its true size
10.29	Bechtler Museum of Modern Art, Charlotte,
	USA, Mario Botta, 2010174
11.1	Theoretical studies of how structural
	configuration can express order through to chaos 178
11.2	Eiffel Tower, Paris, France, G. Eiffel, 1889 179
11.3	Piazza of St Peter's, Rome, Italy, Bernini, 1667 179
11.4	New Gallery, Berlin, Germany, Mies van der
	Rohe, 1968
11.5	Melbourne Museum, Melbourne, Australia,
	Denton Corker Marshall, 2000
11.6	Apartment and office building
	Schlachthausgasse, Vienna, Austria, Coop
	Himmelb(I)au, 2005

11.7	1111 Lincoln Rd, Miami Beach, Florida, USA,
11.8	Herzog & De Meuron, 2010
	Gehry, 2008
11.9	Michael Lee-Chin Crystal, Royal Ontario Museum,
	Toronto, Canada, Daniel Libeskind, 2007: two
	contrasting architectures and structures
11.10	The chaotic quality of interior structure near the
	main façade
11.11	The additional structural actions or cross-
	sectional dimensions to achieve stable leaning
11 10	and bent posts
11.12	Structural configurations expressing stability
11 10	through to instability
11.13	Horizontal forces acting on the roof diaphragm
	from the sloping columns, and the necessary
11 1 1	stabilizing forces from the perimeter walls
11.14	Vancouver Law Courts, Vancouver, Canada,
44.45	Arthur Erickson, 1980
11.15	The Cathedral of Christ the Light, Oakland, CA,
	USA, C. Hartman, 2008
11.16	Jussieu University, Paris, France, Edouart Albert,
	1965
11.17	Sharp Centre, Ontario College of Art & Design,
	Toronto, Canada, Alsop Architects, 2004 185
11.18	Médiathèque, Marseille, France, Alsop &
	Störmer, 1994
11.19	The Beehive, Culver City, USA, Eric Owen Moss
	Architects, 2001 185
11.20	Spittelau Viaducts Housing, Vienna, Austria, Zaha
	Hadid, 2005 186
11.21	Photovoltaic pergola, Barcelona, Spain,
	Architectos Architects, 2004
11.22	Structural configuration varies from static to
	dynamic
11.23	Museum of Anthropology, Vancouver, Canada,
	Arthur Erickson, 1976
11.24	The West Building, Vancouver Convention
	Centre, Vancouver, Canada, LMN Architects,
	MCM Architects and DA Architects + Planners,
	2009: external columns slope towards the inlet 189
11.25	Sloping columns intensify the experience of
	viewing from inside189
11.26	One New Change, London, UK, Jean Nouvel,
	2010
11.27	Bilbao Metro, Bilbao, Spain, Foster and Partners,
	1996

11.28	Mexican Embassy, Berlin, González de León and	
	Serrano, 2000	. 190
11.29	Barajas Airport, Madrid, Spain, Richard Rogers Partnership, 2006	190
11.30	Philharmonie, Berlin, Germany, Hans Scharoun,	. 100
	1963	. 190
11.31	The Cooper Union, New York, USA, Morphosis, 2009	191
11.32	Choreography Centre, Aix-en-Provence, France,	
11.00	Rudy Ricciotti Architecte, 2004	. 191
11.33	Library addition, Leonardo Campus, Münster, Germany, Zauberschoën and Buehler and	
	Buehler Architects, 2010	. 191
11.34	Different degrees of grounding: structural	
	(cantilever) walls, cantilever columns and columns of pin-jointed frames	. 193
11.35	Options for reducing the sense of grounding of	
11.00	structural walls	. 193
11.36	Ordrupgaard Museum extension, Copenhagen, Denmark, Zaha Hadid, 2005	. 194
11.37	Rolex Learning Centre, Lausanne, Switzerland,	
11.38	SANAA, 2009 Mellat Park Cineplex, Tehran, Iran, Fluid Motion	. 194
11.30	Architects, 2008	. 194
11.39	Mellat Gallery, Tehran, Iran, Fluid Motion	
11.40	Architects, 2008 Church at Porta, Brissago, Switzerland, Raffaele	. 194
11.40	Cavadini, 1997	. 195
11.41	Splash Leisure Centre, Sheringham, UK, Alsop	
11.42	& Lyall, 1988 Terminal 3, Beijing Airport, Beijing, China, Foster	. 195
11.12	and Partners, 2008	. 195
11.43	Taisei Sapporo Building, Sapporo, Japan, Taisei	
	Design Planners Architects and Engineers, 2006	196
11.44	Paddington Station addition, London, UK, 2011	
11.45	Unilever Building, Rotterdam, The Netherlands,	107
11.46	JHK Architekten, 2005 University of Alicante Museum, Alfredo Payá	. 197
	Benedito, 1999	. 197
11.47	Vanke Centre, Shenzhen, China, Steven Holl	107
11.48	Architects, 2009 Hoki Museum, Chiba, Japan, Yamanashi,	. 197
	Nakamoto, Suzuki and Yano, 2010: the steel	
11 40	tube, housing a gallery	
11.49 11.50	View from within the gallery Marina Bay Sands, Singapore, Safdie Architects,	190

	2010. Three towers support the bridging and	
	cantilevering SkyPark 1	99
11.51	De Young Museum, San Francisco, USA, Herzog	
	& De Meuron, 20051	199
11.52	Gatehouse canopy, Trumpf Factory, Stuttgart,	
	Germany, Barkow Leibinger, 2010	200
11.53	Maggie's Centre, London, UK, Rogers Stirk	
	Harbour & Partners, 2008: the roof cantilevers	
	from set-back posts along the glazed first-floor	
	walls	200
11.54	The roof is supported by fine steel tubes that	
	raise it above the beams	200
11.55	Notre Dame de la Duchère, Lyon, France, F.	
	Cottin, 1972: posts supporting the roof are	
	barely discernible	201
11.56	The exterior wall is structurally separated from	
	the roof by glazing2	201
12.1	Villa Savoye, Paris, France, Le Corbusier, 1929:	
	the front and side elevation2	203
12.2	Plain exterior column and beam detailing	203
12.3	Millennium Seed Bank, Wakehurst Place, UK,	
	Stanton Williams, 2000: barrel-vaulted roof	
	forms	203
12.4	Detailing matches the simple structural forms2	204
12.5	Vancouver Convention Centre West, Vancouver,	
	Canada, DA Architects + Planners, 2009	204
12.6	Entrance canopy, Terminal 3, Heathrow Airport,	
	London, UK, Foster and Partners, 2009	204
12.7	Schlumberger extension building, Cambridge,	
	UK, Michael Hopkins and Partners, 19922	205
12.8	Financial Times printing works, London, UK,	
	Grimshaw & Partners, 19882	205
12.9	Verbier Sports Centre, Switzerland, André	
	Zufferey, 1984: complex stepping roof form	205
12.10	Visually complex roof structure	205
12.11	Louvre Pyramid, Paris, France, I. M. Pei, 1989:	
	visually complex structure within a simple form 2	206
12.12	A strong internal core is required where	
	perimeter structure is minimized to create	
	openness between the interior and exterior	206
12.13	Extension to the Natural History Museum,	
	London, UK, C. F. Moller Architects, 2009: the	
	west-facing façade with the 'cocoon' behind2	207
12.14	The 'cocoon'	207
12.15	Evelina Children's Hospital, London, UK, Hopkins	
	Architects, 2005: the 100-metre-long atrium is	
	effectively a light-filled conservatory	207

the number of walls increases 208 12.17 Museum of Roman Art, Merida, Spain, Rafael Moneo, 1985 208 12.18 Lyon School of Architecture, Lyon, France, Jourda et Perraudin, 1988: a wall encloses offices and an atrium within 208 12.19 The atrium surrounded by offices and the perimeter wall beyond 209 12.20 FDA Laboratory, Irvine, CA, USA, Zimmer Gunsul Frasca Partnership + HDR, 2003 209 12.21 Terminal 2F, Charles de Gaulle Airport, Paris, France, Aéroports de Paris, 1999: lightweight 'peninsula' roof 210 12.22 Tension-spokes allow roof frames to wrap around the cantilevered floor slab 210 12.23 National Library, Singapore, T.R. Hamzah and K. Yeang, 2004 211 12.24 Arab World Institute, Paris, France, Jean Nouvel, 1987: light vierendeel trusses support the front façade 211 12.25 Ornate internal horizontal trusses by virtue of their detailing 211 12.26 Centre Pompidou, Paris, France, Piano and Rogers, 1977 212 12.27 United Airlines Terminal, Chicago, USA, Murphy/ Jahn, 1987 212 12.28 Learning Resource Centre, Thames Valley University, UK, Richard Rogers Partnership, 1996: both heavy and lightweight forms are visible from the exterior 212 12.29 Curved beams arch over a comp	12.16	Floor plans become more and more closed as
Moneo, 1985		the number of walls increases
Moneo, 1985	12.17	Museum of Roman Art, Merida, Spain, Rafael
 12.18 Lyon School of Architecture, Lyon, France, Jourda et Perraudin, 1988: a wall encloses offices and an atrium within		Moneo, 1985
Jourda et Perraudin, 1988: a wall encloses offices and an atrium within	12.18	
offices and an atrium within 208 12.19 The atrium surrounded by offices and the perimeter wall beyond 209 12.20 FDA Laboratory, Irvine, CA, USA, Zimmer Gunsul Frasca Partnership + HDR, 2003 209 12.21 Terminal 2F, Charles de Gaulle Airport, Paris, France, Aéroports de Paris, 1999: lightweight 'peninsula' roof 210 12.22 Tension-spokes allow roof frames to wrap around the cantilevered floor slab 210 12.23 National Library, Singapore, T.R. Hamzah and K. Yeang, 2004 211 12.24 Arab World Institute, Paris, France, Jean Nouvel, 1987: light vierendeel trusses support the front façade 211 12.25 Ornate internal horizontal trusses by virtue of their detailing 211 12.25 Centre Pompidou, Paris, France, Piano and Rogers, 1977 212 12.27 United Airlines Terminal, Chicago, USA, Murphy/Jahn, 1987 212 12.28 Learning Resource Centre, Thames Valley University, UK, Richard Rogers Partnership, 1996: both heavy and lightweight forms are visible from the exterior 212 12.29 Curved beams arch over a computing area 213 12.30 Portland Building, University of Portsmouth, UK, Hampshire County Council Architects Department, 1996 213 12.31 Brookfield Place, Toronto, Canada, Santiago Calatrava, 1988		
 12.19 The atrium surrounded by offices and the perimeter wall beyond		
perimeter wall beyond 209 12.20 FDA Laboratory, Irvine, CA, USA, Zimmer Gunsul Frasca Partnership + HDR, 2003 209 12.21 Terminal 2F, Charles de Gaulle Airport, Paris, France, Aéroports de Paris, 1999: lightweight 'peninsula' roof 210 12.22 Tension-spokes allow roof frames to wrap around the cantilevered floor slab 210 12.23 National Library, Singapore, T.R. Hamzah and K. Yeang, 2004 211 12.24 Arab World Institute, Paris, France, Jean Nouvel, 1987: light vierendeel trusses support the front façade 211 12.25 Ornate internal horizontal trusses by virtue of their detailing 211 12.26 Centre Pompidou, Paris, France, Piano and Rogers, 1977 212 12.27 United Airlines Terminal, Chicago, USA, Murphy/ Jahn, 1987 212 12.28 Learning Resource Centre, Thames Valley University, UK, Richard Rogers Partnership, 1996: both heavy and lightweight forms are visible from the exterior 212 12.29 Curved beams arch over a computing area 213 12.30 Portland Building, University of Portsmouth, UK, Hampshire County Council Architects Department, 1996 213 12.31 Brookfield Place, Toronto, Canada, Santiago Calatrava, 1983 213 12.32 Wöhlen High School, Switzerland, Santiago Calatrava, 1988	12,19	
 12.20 FDA Laboratory, Irvine, CA, USA, Zimmer Gunsul Frasca Partnership + HDR, 2003	.2	
Gunsul Frasca Partnership + HDR, 200320912.21Terminal 2F, Charles de Gaulle Airport, Paris, France, Aéroports de Paris, 1999: lightweight 'peninsula' roof21012.22Tension-spokes allow roof frames to wrap around the cantilevered floor slab21012.23National Library, Singapore, T.R. Hamzah and K. Yeang, 200421112.24Arab World Institute, Paris, France, Jean Nouvel, 1987: light vierendeel trusses support the front façade21112.25Ornate internal horizontal trusses by virtue of their detailing21112.26Centre Pompidou, Paris, France, Piano and Rogers, 197721212.27United Airlines Terminal, Chicago, USA, Murphy/ Jahn, 198721212.28Learning Resource Centre, Thames Valley University, UK, Richard Rogers Partnership, 1996: both heavy and lightweight forms are visible from the exterior21212.29Curved beams arch over a computing area.21312.30Portland Building, University of Portsmouth, UK, Hampshire County Council Architects Department, 1996.21312.31Brookfield Place, Toronto, Canada, Santiago Calatrava, 1988.21412.33Stadelhofen Railway Station, Zürich, Switzerland, Santiago Calatrava, 1990: cambering the beams and the 'sloping columns' visually lighten the structure.214	12 20	, , , , , , , , , , , , , , , , , , , ,
 12.21 Terminal 2F, Charles de Gaulle Airport, Paris, France, Aéroports de Paris, 1999: lightweight 'peninsula' roof	12.20	
France, Aéroports de Paris, 1999: lightweight 210 12.22 Tension-spokes allow roof frames to wrap 210 12.23 National Library, Singapore, T.R. Hamzah and 211 12.24 Arab World Institute, Paris, France, Jean Nouvel, 1987: light vierendeel trusses support the front 1açade 211 12.25 Ornate internal horizontal trusses by virtue of 211 12.26 Centre Pompidou, Paris, France, Piano and 212 12.27 United Airlines Terminal, Chicago, USA, Murphy/ 212 12.27 United Airlines Terminal, Chicago, USA, Murphy/ 212 12.28 Learning Resource Centre, Thames Valley 212 12.29 Curved beams arch over a computing area. 213 12.30 Portland Building, University of Portsmouth, 214 12.31 Brookfield Place, Toronto, Canada, Santiago 213 12.32 Wöhlen High School, Switzerland, Santiago 213 12.33 Stadelhofen Railway Station, Zürich, Switzerland, 214	10 01	
'peninsula' roof21012.22Tension-spokes allow roof frames to wrap around the cantilevered floor slab21012.23National Library, Singapore, T.R. Hamzah and K. Yeang, 200421112.24Arab World Institute, Paris, France, Jean Nouvel, 1987: light vierendeel trusses support the front façade21112.25Ornate internal horizontal trusses by virtue of their detailing21112.26Centre Pompidou, Paris, France, Piano and Rogers, 197721212.27United Airlines Terminal, Chicago, USA, Murphy/ Jahn, 198721212.28Learning Resource Centre, Thames Valley University, UK, Richard Rogers Partnership, 1996: both heavy and lightweight forms are visible from the exterior21312.30Portland Building, University of Portsmouth, UK, Hampshire County Council Architects Department, 199621312.31Brookfield Place, Toronto, Canada, Santiago Calatrava, 198821412.33Stadelhofen Railway Station, Zürich, Switzerland, Santiago Calatrava, 1990: cambering the beams and the 'sloping columns' visually lighten the structure214	12.21	
 12.22 Tension-spokes allow roof frames to wrap around the cantilevered floor slab		
around the cantilevered floor slab	10.00	•
 12.23 National Library, Singapore, T.R. Hamzah and K. Yeang, 2004	12.22	
K. Yeang, 2004 211 12.24 Arab World Institute, Paris, France, Jean Nouvel, 1987: light vierendeel trusses support the front façade 211 12.25 Ornate internal horizontal trusses by virtue of their detailing 211 12.26 Centre Pompidou, Paris, France, Piano and Rogers, 1977 212 12.27 United Airlines Terminal, Chicago, USA, Murphy/ Jahn, 1987 212 12.28 Learning Resource Centre, Thames Valley University, UK, Richard Rogers Partnership, 1996: both heavy and lightweight forms are visible from the exterior 212 12.29 Curved beams arch over a computing area 213 12.30 Portland Building, University of Portsmouth, UK, Hampshire County Council Architects Department, 1996 213 12.31 Brookfield Place, Toronto, Canada, Santiago Calatrava, 1988 214 12.33 Stadelhofen Railway Station, Zürich, Switzerland, Santiago Calatrava, 1990: cambering the beams and the 'sloping columns' visually lighten the structure 214		
 12.24 Arab World Institute, Paris, France, Jean Nouvel, 1987: light vierendeel trusses support the front façade	12.23	
1987: light vierendeel trusses support the front façade 211 12.25 Ornate internal horizontal trusses by virtue of their detailing 211 12.26 Centre Pompidou, Paris, France, Piano and Rogers, 1977 212 12.27 United Airlines Terminal, Chicago, USA, Murphy/ Jahn, 1987 212 12.28 Learning Resource Centre, Thames Valley University, UK, Richard Rogers Partnership, 1996: both heavy and lightweight forms are visible from the exterior 212 12.29 Curved beams arch over a computing area. 213 12.30 Portland Building, University of Portsmouth, UK, Hampshire County Council Architects Department, 1996 213 12.31 Brookfield Place, Toronto, Canada, Santiago 213 12.32 Wöhlen High School, Switzerland, Santiago 214 12.33 Stadelhofen Railway Station, Zürich, Switzerland, Santiago Calatrava, 1990: cambering the beams and the 'sloping columns' visually lighten the structure. 214		-
façade21112.25Ornate internal horizontal trusses by virtue of their detailing21112.26Centre Pompidou, Paris, France, Piano and Rogers, 1977	12.24	
 12.25 Ornate internal horizontal trusses by virtue of their detailing		1987: light vierendeel trusses support the front
their detailing		façade 211
 12.26 Centre Pompidou, Paris, France, Piano and Rogers, 1977	12.25	Ornate internal horizontal trusses by virtue of
Rogers, 1977		their detailing 211
 12.27 United Airlines Terminal, Chicago, USA, Murphy/ Jahn, 1987	12.26	Centre Pompidou, Paris, France, Piano and
Jahn, 1987		Rogers, 1977
 12.28 Learning Resource Centre, Thames Valley University, UK, Richard Rogers Partnership, 1996: both heavy and lightweight forms are visible from the exterior	12.27	United Airlines Terminal, Chicago, USA, Murphy/
University, UK, Richard Rogers Partnership, 1996: both heavy and lightweight forms are visible from the exterior		Jahn, 1987
University, UK, Richard Rogers Partnership, 1996: both heavy and lightweight forms are visible from the exterior	12.28	Learning Resource Centre, Thames Valley
1996: both heavy and lightweight forms are visible from the exterior21212.29Curved beams arch over a computing area21312.30Portland Building, University of Portsmouth, UK, Hampshire County Council Architects Department, 199621312.31Brookfield Place, Toronto, Canada, Santiago Calatrava, 199321312.32Wöhlen High School, Switzerland, Santiago Calatrava, 198821412.33Stadelhofen Railway Station, Zürich, Switzerland, Santiago Calatrava, 1990: cambering the beams and the 'sloping columns' visually lighten the structure214		-
visible from the exterior		
 12.29 Curved beams arch over a computing area		
 12.30 Portland Building, University of Portsmouth, UK, Hampshire County Council Architects Department, 1996	12 29	
UK, Hampshire County Council Architects Department, 1996		. –
Department, 1996	12.00	
 12.31 Brookfield Place, Toronto, Canada, Santiago Calatrava, 1993		
Calatrava, 1993	10 01	
 12.32 Wöhlen High School, Switzerland, Santiago Calatrava, 1988	12.31	-
Calatrava, 1988	10.00	
12.33 Stadelhofen Railway Station, Zürich, Switzerland, Santiago Calatrava, 1990: cambering the beams and the 'sloping columns' visually lighten the structure	12.32	
Santiago Calatrava, 1990: cambering the beams and the 'sloping columns' visually lighten the structure	10.00	
and the 'sloping columns' visually lighten the structure	12.33	
structure		
12.34 Pier detailing reduces visual mass		
12.35 Moscone Center, San Francisco, USA, Hellmuth,	12.35	
		Obata and Kassabaum, 1981 215
		Obata and Kassabaum, 1981 215

12.36	Hong Kong and Shanghai Bank, Hong Kong,	
	China, Foster Associates, 1986	. 216
12.37	Centre for Understanding the Environment	
	(CUE), Horniman Museum, London, UK,	
	Architype, 1997: front façade with chimney-like	
	columns	. 216
12.38	Interior column and beam	. 217
12.39	Suntory Museum, Tokyo, Japan, Kengo Kuma &	
	Associates, 2007	. 217
12.40	21_21 Design Sight, Tokyo, Japan, Tadeo Ando &	
	Associates, 2007	. 217
12.41	Tama Art University Library, Hachioji City, Japan,	
	Toyo Ito & Associates, 2007: two curved exterior	
	walls express the surface of structure that takes	
	on three-dimensional form inside	218
12.42	Structure, curved in elevation and in plan	
12.42	Law Faculty extension, Limoges, France,	. 210
12.45	Massimiliano Fuksas, 1997	210
12.44	Santispark Health and Leisure Centre, St Gallen,	. 213
12.44		
	Switzerland, Raush, Ladner, Clerici, 1986: the	010
10.45	roof curves down from the ridge	. 219
12.45	Roof structure with its deliberate sagging	040
10.40	profile	. 219
12.46	Licorne football stadium, Amiens, France, Chaix	
	& Morel et Associés, 1999	. 220
12.47	Barcelona Fair GranVia Venue, Barcelona, Spain,	
	Toyo Ito, 2007	. 220
12.48	Faculty of Law Building, Cambridge, UK, Foster	
	and Partners, 1996	. 220
12.49	Museum of Anthropology, Vancouver, Canada,	
	Arthur Erickson, 1976	. 221
12.50	Swimming pool, Barcelona, Spain, J. Antonio,	
	1996	. 221
12.51	Church at Porta, Brissago, Switzerland, Raffaele	
	Cavadini, 1997	. 222
12.52	Felix Nussbaum Museum, Osnabrück, Germany,	
	Daniel Libeskind, 1998	. 222
12.53	Bracken House, London, UK, Michael Hopkins	
	and Partners, 1991: elegant truss members	
	meet at a joint	. 223
12.54	Interior columns reflect the curved plan shape	
	of the new insertion	. 223
12.55	Queen's Building, Cambridge, UK, Michael	
	Hopkins and Partners, 1995: main façade	. 223
12.56	Refined roof truss detailing	
12.57	A post-tensioning node detail	
	· · · · · · · · · · · · · · · · · · ·	

12.58	Sainte-Geneviève Library, Paris, France, Henri	
	Labrouste, 1850	224
12.59	MUMUTH Music School and Theatre, Graz,	
	Austria, UN Studio, 2008	225
12.60	Attic conversion, Vienna, Austria, Coop	
	Himmelb(I)au, 1988: the attic roof oversails the	
	existing building	225
12.61	Irregularity of the form is reflected in the	

	roughness of the detailing22	25
12.62	LASALLE College of the Arts, Singapore, RSP	
	Architects, 200722	26
12.63	Güell Colony Crypt, Barcelona, Spain, Antoni	
	Gaudí, 1917 22	26
12.64	Pedestrian footbridge, Stratford, London, UK,	
	Buro Happold Services and Knight Architects,	
	2009	27

Preface

The second edition of this book is based largely on the first, with a number of significant enhancements. Three new chapters have been introduced, of which two consider the topic of structure in architecture from a new perspective. The first edition concentrated upon an *analysis* of architectural structure. It analysed and illustrated the many architectural roles structure plays in both physical and conceptual ways. Its starting point was structure as manifest in existing architecture. Now, the additional two chapters focus on the same topic, but from the perspective of *design*. They begin from the basis of architects' design concepts and architectural qualities and show how structure positively reinforces the most common contemporary design concepts and facilitates desired spatial and other qualities.

This new emphasis on design, rather than analysis, brings a welcome balance to the book. The process of developing this material involved an interesting journey to identify and summarize current architectural concepts and qualities, and then illustrate them from existing works of architecture. One of the most rewarding aspects of this design-orientated emphasis was the design study undertaken by one of my postgraduate classes. Students designed spatial structure to convey a wide range of design concepts. The most relevant outcomes are presented in Chapter 11.

As well as the introduction of this design-related content, the third new chapter shifts the focus upon *exposed* structure to structure that is *hidden*. This exploration not only acknowledges pragmatic aspects of structural hiddenness, but also aims to stimulate greater creativity in the concealment of structure.

This new edition has also provided an opportunity to update case-studies, and broaden their geographical catchment. Thirty per cent of the case-studies are new additions, many from countries previously unrepresented, most notably Japan.

In spite of all of these and other improvements, the central theme of the book remains unchanged: where structure contributes architecturally, other than in its primary loadbearing role, it contributes other layers of aesthetic and functional richness to designs. It reinforces architectural design concepts and intended architectural qualities, thereby increasing the interest in and enjoyment of buildings, raising the spirits of their occupants.

> Andrew Charleson February 2014

Acknowledgements

The support of Victoria University of Wellington, which provided a period of research and study leave during which most of this second edition was researched and written, is gratefully acknowledged. During the time spent in Tokyo, Professor Masato Araya's support was much appreciated.

Thanks to Catherine Mooney, who updated the previous diagrams and drew all the new diagrams for this edition, and once again to Paul Hillier, who scanned and modified hundreds of images. Eric Camplin provided much-valued computer support.

I thank the following 2012 fourth-year architectural students, whose ARCI421 design assignment coursework

has provided the inspiration and been modified for the design studies presented in Chapter 11: Emily Batchelor, Hamish Beattie, Alexandra Sawicka-Ritchie, Thomas Seear-Budd, Annabel Fraser, Amber Marie Gray, Henry Velvin, Jae Warrander, Bronwyn Phillipps, Qing Liao, Jorle Wiesen and Monique Mackenzie.

Many individuals have provided images and given permission for their use. They are acknowledged in the figure captions. Unless otherwise noted, photographs are by the author.

Finally, thanks again to my wife Annette for her support and encouragement throughout this project.

This page intentionally left blank

Introduction

Structure is columnar, planar, or a combination of these which a designer can intentionally use to reinforce or realize ideas. In this context, columns, walls and beams can be thought of in terms of concepts of frequency, pattern, simplicity, regularity, randomness and complexity. As such, structure can be used to define space, create units, articulate circulation, suggest movement, or develop composition and modulations. In this way, it becomes inextricably linked to the very elements which create architecture, its quality and excitement.¹

The potential for structure to enrich architecture

Clark and Pause's statement above begins by describing the architectural qualities of structure and then suggests how structure might enrich architecture. But is such a positive attitude to structure realistic? What was the last building *you* experienced where structure either created the architecture or contributed a sense of excitement to it? Where do we find examples of structure playing such active architectural roles as defining space and modulating surfaces? And, how else might structure contribute architecturally? These questions set the agenda of this book, informing its focus and scope, and initiating an exploration of architecturally enriching structure.

Some readers may consider Clark and Pause's attitude towards structure as a fully integrated architectural element rather unrealistic. So often our day-to-day experience of structure can be described as unmemorable. In much of our built environment structure is either concealed or nondescript. Opaque façade panels or mirror-glass panes hide structure located on a building's perimeter. Inside a building, suspended ceilings conceal beams, and vertical structural elements like columns, cross-bracing and structural walls are either enveloped within partition walls or else visually indistinguishable from them. Even if structure *is* exposed, often its repetitive and predictable configuration in plan and elevation, as well as its unrefined member and connection detailing, can rarely be described as 'creating architecture, its quality and excitement'.

Fortunately, in addition to these ubiquitous and bland structural encounters, sufficient precedents of positive structural contributions to architecture exist. They point towards bolder and more exciting possibilities and have convinced critical observers, like Clark and Pause and others, of the potential for structure to engage with architecture more actively and creatively. Peter Collins, the architectural theorist, shares similarly constructive convictions regarding structure's architectural roles. In concluding a discussion on eighteenthand nineteenth-century Rationalism, he suggests:

However much the emphasis on structural expression may have been exaggerated in the past by a craving for ostentation, or reduced by the competing emphases on spatial effects, sculptural effects and new planning requirements, it is still potentially one of the most vigorous ideals of the modern age, and it would not be an exaggeration to say that it is the notion which offers the most fruitful prospects for the future development of modern architectural thought.²

Like the authors quoted above, I will also be looking beyond the physical necessity of structure towards its functional and aesthetic possibilities. Just because structure is essential for built architecture, providing it with necessary stability, strength and stiffness, it does not have to be architecturally mute – unless of course its designers make that choice. This book provides many examples of structures 'speaking' and even 'shouting' in their architectural contexts. In these cases their designers, usually both architects and structural engineers, have made structural decisions that do not detract from but rather strengthen their architectural ideas and requirements. Structure no longer remains silent; it is a voice to be heard.

Where structure is given a voice, as illustrated in the following chapters, it contributes architectural meaning and richness, sometimes becoming the most significant of all architectural elements in a building. Endless opportunities exist for structure to enhance architecture and thereby enrich our architectural experiences. As designers we can allow structure to speak and to be heard; or, to change the metaphor, we can design structure so that its viewers not only see and experience it, but, due to its well-considered architectural qualities, are enticed into 'reading' it.

Experiencing structure: reading and listening

Architects analyse structure by experiencing and reading it. In their succinct summary, Clarke and Pause suggest the ways structure might be read or analysed architecturally. In some architectural reviews of buildings, particularly where structure is exposed, structural readings are made. Although reviewers usually make little more than a passing comment, analysing structure in this way remains valid. The following two examples illustrate architecturally focused structural readings.

Fontein offers a reading of the interior structure of her School of Architecture building. She concentrates upon a single column, differentiated from others by virtue of its circular cross-section and increased height. She asserts that this column 'plays a pivotal role in the building' by marking and sheltering the intersection of two internal streets. It also connects that street junction to the school's main collective space whose activities it both supports and obstructs. Ultimately it 'establishes structure as a primary ordering device in the architecture of the School . . . and has the palpable effect of anchoring the life of the School'.³ LaVine tends towards less personified readings as he discerns significant architectural roles played by structure in his four house case-studies.⁴ He notes how a ridge beam can symbolize the social centre of a house, and how a superstructure orders space by virtue of its regularity and hierarchy. In other examples, columns 'signify human activities of special significance' or 'portray a mechanical idealism'. He reads walls as separating occupants from the outside world, and frames as ordering interior space. As he reads structure, each structural element is laden with meaning and makes an important architectural contribution.

For many, the reading of architecture is as natural as breathing. For example, Stan Allen comments on the Tama Art Library, designed by Toyo Ito, that

it is impossible not to read the arches as a sign, a reference to a recognizable form in the repertory of classical architecture. They *are* that, but they are many other things, too . . . Ito produces work that is richer and more nuanced precisely for its capacity to hold these multiple readings in a delicate equilibrium.⁵

All architectural readings incorporate a degree of subjectivity. To a certain extent, each reading is personal. It reflects the reader's background and architectural knowledge. The quality of their experience of a building is another factor which depends on the duration of the visit and the depth of reflection during and after it.

The views of two or more readers are unlikely to be identical. Each person brings their own perspective. For example, an architect and structural engineer will read a structure quite differently. Each approaches it with his or her professional interest and concerns to the forefront. Whereas an architect might focus on how structure impacts the surrounding space, an engineer will most likely perceive structure as facilitating a load-path.

The discussion above considers structure as a passive architectural element – like a book waiting to be read. However, could it be that structure plays a more active role and actually speaks to us? So as well as reading structure must we also listen to it? According to Alain de Botton, we should.⁶ To ease us into this possibly surprising idea, in his chapter 'Talking buildings' he reminds us how sculpture generates in us a thoughtful and responsive attitude towards objects. 'The great abstract sculptures', he says, 'have succeeded in speaking to us, in their particular dissociated language, of the important themes of our lives.⁷ The argument continues that if objects in a gallery can speak, and even pencil squiggles on paper can convey emotions, such as peacefulness and confusion, how much more can buildings communicate? Buildings are therefore pregnant with expressive potential, as are their elements, including structure, and de Botton acknowledges this by suggesting that 'we can be moved by a column that meets a roof with grace'.⁸

So, my architectural analyses of structure inevitably reflect who I am, how I read and listen to structure, and this is affected by my structural engineering background, my experience of teaching in a school of architecture, and my intense interest in how structure can enrich architecture.

Before commencing to read building structures and explore their architectural contributions, the next section clarifies the meaning of the book's central focus – exposed structure.

Structure and its degree of exposure

At this stage it is necessary to come to a common understanding of what constitutes structure, and to comment on aspects of its exposure. For the purpose of sensibly limiting the scope of the book, structure is taken to mean any structural element that bears load other than that arising from its self-weight or self-induced loads, like those from wind or snow.

This definition therefore excludes consideration of purely decorative elements without wanting to deny any significant architectural roles they might play. Imitative structure and authentic structural members that are not load-bearing, even though they might clearly express their materiality and display standard structural dimensions, lie outside the scope of this book. Examples of the latter category include exposed frameworks whose sole purpose is to contribute to a building's composition, perhaps visually linking together disparate forms.

Although this discussion omits structure whose rationale is *solely* aesthetic, structural elements and details with minimal structural effectiveness *are* included. Structural details like the attached shafts on Gothic piers fall into this category. Even

though their architectural contribution may be seen as more aesthetic than structural, by increasing the cross-sectional area and depth of a pier, the details slightly increase its compression strength and overall stability.

Having established a working definition of structure, an explanation for the focus upon *exposed* structure is warranted and quite simple. Where structure is not exposed but concealed, perhaps hidden within wall cavities, screened by suspended ceilings or undifferentiated from partition walling, it possesses very limited opportunities to enrich architecture. In these situations, where the architecture must rely on other devices and elements for its qualities, any skeletal, wall-like or expressive structural qualities remain latent – structure cannot be read.

Architects take an unlimited number of approaches towards structural exposure. In its fully exposed state, the raw materiality of structure is visible, be it masonry, concrete, steel or natural timber. Even if coatings or claddings partially or fully veil structural members and their materiality, structural form can still play significant and expressive architectural roles. Steel structural members may be wrapped with corrosion and fire protection coatings and even cladding panels, but their structural forms can still enliven façades and interior spaces. Hence, in this book, *exposed* structure includes any visible structural forms, irrespective of whether their materiality is concealed.

This apparent preoccupation with exposed structure does not mean it is a requirement of exemplary architecture. Exposed structure has rightly been deemed inappropriate on many past occasions given the design ideals current at those times. Cowan gives examples of periods in architectural history, such as the Renaissance and the Baroque, when exposed structure would have detracted from the forms and embellished surfaces that designers were attempting to achieve.⁹ Absence of exposed structure in contemporary buildings may also be completely defensible. For example, exterior exposed structure might compromise architectural forms exhibiting sculptural qualities and curved surfaces, and interior exposed structure would impact negatively upon an architectural goal of achieving spaces defined by pure planar surfaces.

Decisions regarding the extent to which structure should be exposed in an architectural design, if at all, are best made after revisiting the design concept and asking whether exposed structure will enhance its realization. Then, irrespective of the answer, design ideas will be communicated with greater clarity. Structural exposure should therefore be limited to buildings where structure integrates with and clearly strengthens the expression of architectural ideas.

Book outline

The following chapter analyses the structures of two contrasting buildings to set the scene for more focused and detailed explorations of many other buildings in the remainder of the book. Both buildings exemplify structure contributing architecturally in the context of specific architectural programmes. Exposed structure plays significant architectural roles on the exterior of the first building, while in the second, structure creates special interior spaces. Due to the inevitably limited range of architectural contributions illustrated by the two case-studies, the following chapters explore and illustrate exposed structure enriching specific areas of architecture in more detail.

Beginning with Chapter 3, chapter sequencing up to and including Chapter 9 reflects a typical progression of experiences when visiting a building. First, imagine approaching a building from a distance. When only architectural massing may be discerned, the diversity of relationship between architectural and structural form is explored. Then, in Chapter 4, drawing closer to the building, one observes structural elements enlivening façades in various ways, including forming surface patterns and textures, providing visual clues of entry, connecting exterior and interior architecture, and playing diverse expressive roles.

Having entered the building, the next three chapters consider relationships between the structure and interior architecture. Chapter 5 examines how structure enhances and, in some cases, defines building function. Structure maximizes planning flexibility, subdivides space to facilitate separate functions, and articulates circulation paths. Chapter 6 focuses on interior structure as an architectural element in its own right. It addresses the question of how structure enlivens and articulates interior spaces and surfaces. Examples illustrate structure providing a wide range of surface and spatial qualities. Some interior structures read as responding to aspects such as a building's geometry or function, or, alternatively, expressing external factors like soil pressures or other site-specific characteristics.

Exploration of interior structure narrows in scope in Chapter 7 with an examination of structural detailing. After noting the importance of detailing being driven by a design concept, examples of expressive and responsive details are provided. They comprise two categories of details, one of which gains its inspiration from within the building, and the other from without. Some structural members are so elegantly detailed as to be considered objects of aesthetic delight, considerably increasing one's enjoyment and interest in architecture. A plethora of structural detailing languages with diverse architectural qualities strengthens designers' abilities to realize overarching architectural design concepts.

Chapter 8 investigates the relationship between structure and light, both natural and artificial. It illustrates structure's dual roles, as both a source and modifier of light, and introduces a number of different strategies designers use to maximize the ingress of light into buildings. Chapter 9 reflects on the symbolic and representational roles structure plays. Structure references naturally occurring objects like trees and processes such as erosion, as well as human artefacts, notions and experiences as diverse as oppression and humour.

Having completed explorations of exposed structure, Chapter 10 enters the world of hidden structure and contemplates its contribution to architecture, even though it is concealed. Then, in the following two chapters, the focus shifts from analysis of structure to design. Rather than analysing the roles of structure beyond load-bearing, the intent of Chapters 11 and 12 is to show how structure can reinforce architectural concepts, and realize specific architectural qualities.

The final chapter offers a brief distillation of the main themes that have emerged throughout the book – namely the transformative power of structure, the diversity with which it enriches architecture, and implications for the architectural and structural engineering professions.

Notes

- R. H. Clark and M. Pause, *Precedents in architecture*, Hoboken, NJ: Van Nostrand Reinhold, 1985, p. 3.
- 2. P. Collins, *Changing ideals in modern architecture 1750–1950*, 2nd edn, Montreal: McGill-Queen's University Press, 1998, p. 217.
- L. Fontein, 'Reading structure through the frame', *Perspecta* 31, 2000, 50–9.
- L. LaVine, *Mechanics and meaning in architecture*, Minneapolis: University of Minnesota Press, 2001.
- S. Allen, 'Toyo Ito's patient search', in J. Turnbull (ed.), *Toyo Ito forces of nature*, New York: Princeton Architectural Press, 2012, p. 24.
- A. de Botton, *The architecture of happiness*, London: Hamish Hamilton/Penguin, 2006.
- 7. lbid., p. 81.
- 8. Ibid., p. 98.
- H. Cowan, 'A note on structural honesty', *Architecture Australia* 1,1980, 28–32.

Two building studies

This chapter presents structural analyses of two very different buildings. Between them, they exemplify structure enriching most aspects and areas of architecture. These analyses introduce the many ways structure contributes to architecture and prepares the way for a more detailed investigation and categorization of the architectural potential of structure in subsequent chapters.

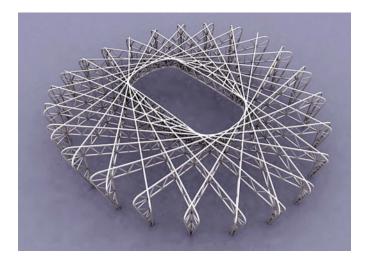
The following two case-studies illustrate the considered use of exposed structure in very different architectural contexts. First, the National Stadium, Beijing, displays an exuberant and chaotic exterior structure, but it is more muted when experienced from the interior. Exterior and interior expression reverses in the second building, the Baumschulenweg Crematorium. Within its formal minimalist exterior envelope, impressive exposed interior structure in the form of 'randomly placed' columns transforms the main space, leading to alternative architectural readings.

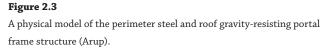
National Stadium, Beijing

Built for the Beijing XXIXth Olympiad, which was held during August 2008, the National Stadium is the largest and most dominant building at the Olympic site. Accommodating 91,000 spectators during the Olympics, the oval-shaped stadium has a roof structure 313 m long by 266 m wide, including a large elliptical opening above the stadium pitch. A retractable roof was originally designed, but omitted at a late stage during the design process. The height of the saddleshaped top surface varies from 40 m at its lowest point to the approximate height of a 20-storey building – 70 m – at its highest (Figure 2.1).

The rounded vessel-like form comprises two independent free-standing structures: an interior reinforced concrete bowl with its three tiers of sloping seating, and the perimeter and roof steel structure. The bowl structure is itself divided

National Stadium, Beijing, China, Herzog & De Meuron, 2008. An elevation of the stadium.


Figure 2.2


The perimeter steel structure wraps around the inner concrete bowl (Arup).

into six structurally independent segments separated by 200 mm-wide gaps for seismic and thermal movements. These structures are frame structures, consisting of beams and columns interconnected by rigid joints. Lateral or horizontal loads arising from wind and earthquake are mainly resisted by structural walls forming the two lift cores of each segment. The roof is clad by two tension membranes supported by the perimeter and roof steel structure. An outer transparent ETFE single-layer provides weather protection to the stands, while a lower PTFE membrane offers shade and improved acoustics.

The perimeter steel structure defines the extent and shape of the building as it wraps around it (Figure 2.2). However, unlike most stadiums with exposed structure, from most vantage points both outside and within the structural rationale, if any, is not at all apparent. How does this chaotic assemblage of inclined members that become curved tangles at roof level possibly constitute a roof structure? How can such an apparently irrational configuration of structural members provide a roof that cantilevers over 40 m from its perimeter to the edge of the internal opening? Is this a case where so much structure is thrown into a building in the absence of structural rationality that highly sophisticated structural engineering analyses indicate the structure will somehow stand up? The answers to these questions can hardly be answered without recourse to engineering drawings. They reveal a most unexpected yet conceptually simple structural solution (Figures 2.3 and 2.4).

Perimeter structural chaos effectively conceals a series of twenty-four symmetrically positioned portal frames. Portal frames, just one level of complexity beyond the most basic of structural systems, the post-and-beam, are responsible for supporting the whole roof. Their presence is even more

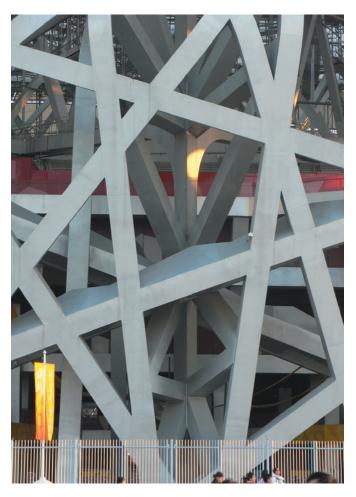


Figure 2.4 The bottom chords of the portal girders can be seen from the seating bowl.

surprising given their general relegation by architects to structure less elegant constructions, like light-industrial buildings. Admittedly, these portal frames are not the normal run-of-the-mill type. Detailed as trusses, and 12 m deep, they interconnect to support each other and form a threedimensional truss network. Each column, V-shaped in plan, deepens from a pin joint at its base to reach the 12 m depth before bending over to become a portal frame girder (Figures 2.5 and 2.6). This is the roof structure, designed for gravity loads, vertical loads from wind, and earthquake loads.

The horizontal load resistance of the free-standing perimeter and roof structure is also another puzzle inviting resolution. Damage to the portal frames must be prevented during a large earthquake. The stability of the whole roof structure cannot be jeopardized. And yet there are no visible shear walls, bays of conventional cross-bracing or obvious moment frames – the three most conventional seismic force-resisting systems. However, we can discern within the irregularity of the layout of façade members patterns of triangulation, albeit not from any textbook. This irregular triangulated structure, which seems to be a consequence of structural randomization, provides sufficient strength and stiffness to satisfy the demanding engineering design criteria.

Structural elements visually dominate the exterior of this building by their random and dynamic arrangement. Rather than relying upon monumentality conferred by massive structural walls or columns, the modestly sized members exude expressive qualities due to their geometrical configuration. At least on the outer structural layer no vertical nor horizontal members are found. Orthogonality has been

Figure 2.5 A view of a V-shaped truss-column near its base.

Figure 2.6 Horizontal and diagonal members of portal girders are visible beyond the upper curved structure.

Figure 2.7 Columns supporting the concrete bowl are also inclined.

banished entirely from the perimeter structure, but it is still able to fulfil its load-bearing roles (and others). For example, its bewildering number and orientation of members act to screen the seating bowl, whose visual presence is enhanced by red-painted exterior surfaces. The 'screen', up to 12 m deep, is also very porous, if not welcoming. A lack of perimeter structural barriers means there can be many possible entrances.

A potential danger of expressing such dynamic perimeter structure is that more conventional interior structure, by comparison, could be considered an anticlimax. This has been avoided by the inclination of columns around both the perimeter and inner edges of the concrete bowl (Figure 2.7). Steel and concrete members speak the same dynamic language so there is no aesthetic disjuncture between these two structures.

As well as the perimeter structure functioning as a fully load-bearing assemblage and an expressive façade with screening qualities, it hosts most of the stadium's vertical circulation in the form of stairs. The stairs are integral with the least-inclined sloping members which conceal them from view (Figure 2.8). As they rise, the stairs snake around and through the structure. This strategy of embedding circulation within the structural width or depth is observed in other buildings too, such as the Sainsbury Centre, whose perimeter structure along its sides provides space for stairs and other functions (see Figure 5.12).

One of the architectural characteristics of the exposed steel structure that requires comment is its detailing: that is, the form and finishing of the structural members and their

Figure 2.8

A flight of stairs with a visible soffit fully integrated with an inclined perimeter member.

connections. The most significant aspect of detailing is that all exposed members, square steel box sections, have the same external dimension of 1.2 m \times 1.2 m. The tremendous variation in forces within members is economically accommodated by adjusting the wall thicknesses of the sections. Plate thickness varies from 10 mm to 100 mm, but the resulting variation in strength is not apparent.

So, not only is there no visual hierarchy of strength or structural importance in the structural members, but since every member, whether primary, secondary or tertiary, has the same dimensions, there is no structural hierarchy *at all*.